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Kink dynamics in a topological ¢* lattice

A. B. Adib* and C. A. S. Almeida
Departamento de Bica, Universidade Federal do Cear@aixa Postal 6030, 60455-760 Fortaleza, CeaBaazil
(Received 25 April 2001; published 27 August 2001

Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting
lattice preserves the topologic@ogomol’nyi) lower bound on the kink energy and, as a consequence, has no
Peierls-Nabarro barrier even for large spatial discretizatibrs1(.0). It was then suggested that these “topo-
logical discrete systems” are a natural choice for the numerical study of continuum kink dynamics. Giving
particular emphasis to th¢* theory, we numerically investigate kink-antikink scattering and breather forma-
tion in these topological lattices. Our results indicate that, even though these systems are quite accurate for
studyingfree kinks in coarse lattices, for legitimatiynamicalkink problems the accuracy is rather restricted
to fine lattices fi=0.1). We suggest that this fact is related to the breaking of the Bogomol’'nyi bound during
the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi
argument. We conclude, therefore, that these latticesnatesuitable for the study of more general kink
dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.
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Coherent structures in nonlinear Klein-Gordon field theo-discretization is also accurate. Our proposal in this report is
ries are an active topic of research in many branches of physe show how we have investigated these facts.
ics, arising either as a fundamental excitation in particle The equation of motion for our problem is the well-
physics or as a collective excitation in effective field theo-known Klein-Gordon equation:
ries. Of particular interest are the so-called topological solu-
tions, where the “kinks” are probably among the most stud- Ihp=3dxp—V' (), (1)
ied ones(see, e.g[1] and[2]).

Focusing on the numerical study of kink dynamics,With subsqript's denqting partial derivatives apd primes de-
Speight and War@3] suggested a new discrete sine-Gordonhoting dgrlvatlves with respe40t 0. The potential we have
system that preserves the so-called “Bogomol'nyi bound” on2dopted is thédouble wel) ¢* one:
the kink energy[4], being also applied in &* system[5],
and recently generalized to nonlinear Klein-Gordon equa- V(¢):E(1—¢2)2. )
tions in one spatial dimensidi®]. These systems were then 4
called “topological discrete systemgTDS) by the authors
(since the Bogomol'nyi bound depends on the topologicaiNotice that it differs from that of Speight] by a mere factor
charge, i.e., on the boundary conditions at infipignd they ~ Of 2. We have, of course, corrected the TDS equations in
showed that such lattices do not present the so-called Peier/@fder to account for this fact, and a test of validity of this,
Nabarro barrier, which, for continuum field theories, is arather, simple correction will be given below for the case of

rather artificial and undesirable effect induced by standard fre_e kmk_(AII physmal quantities 'U_th's quk \.N'” be given
discretizations. in dimensionless units. For specific applications, a simple

B . . . . rescaling of the variables in the above equations can intro-
y means of numerical experiments with the velocity of a .

. ) . quce the desired units

S|r_19|_e kink, th_ese_ aL.Jt.horS also showed that the numerical ., order to integrate Eq1) we use the standard staggered
drift in a TDS is significantly reduced even for large spatial leapfrog scheme, which ensures second-order accuracy in
discretizationsh~1.0, and concluded that this construction e (see, e.9.[7])

provides an efficient and natural choice for numerically
simulating kink dynamics in nonlinear Klein-Gordon mod- pH2_ g =12 A9 NV ()]
els. If the latter statement were indeed true, it is clear that we ! ! X b
would benefit a lot in both computational time and memory

_ “n+ 1
usage by using coarse lattices with=1.0 when studying M=+ Ate Y2, ()
complex kink behavior in these field theories, such as ) ) o
breather formation and multiple kinfantikink) scattering. ~ Where superscriptésubscripty denote temporalspatia) in-

However, and for our disappointment, we found that adices, overdots represent partial time derivatives, and primes

fine spatial discretizations~0.1, where a simpler standard €valuated with a standard second-order centered difference

[FgxPi~h~2(bi1— 2+ ¢i_1)] that coincides with the re-
E— sulting discretization required by our particular TDS choice
*Email address: adib@fisica.ufc.br [5]. Being a symplectic algorithm, the leapfrog scheme is
"Email address: carlos@fisica.ufc.br suitable to Hamiltonian systentsee, e.9.[8]) and therefore
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we expect good energy conservation throughout our simula:

tions. Indeed, in a typical simulation with=0.1, the energy %k 1
is conserved to better than one part ir?.10 0.5 .
The “standard” discretization of the potential) is

straightforward, and involves simply the replacement of theZ 0.4 r |

continuum arguments andt by their discrete counterparts, § 03 - _

e.g., i and n. Putting briefly, the TDS approach adopts a x

rather different lattice potential, which for thg* case was ¥ 02 ]

suggested to have the forf8] o1 ]
Vv PP +¢? r 4 °r ]

ros($)=g| 17 3Pt dindit e (@ 0 500 1000 1500 2000 2500 3000
Time

with the temporal indices equal to Of course, in the limit _ _ _ _
h—0 both lattice potentials are equivalent to the continuum FIG. 1. Time evolution of the free kink velocity for=1.2. The
one(2). Notice that the resulting equation of motion involves UPPer curve is for the TDS lattice whereas the lower one is for a

a field derivative oV1ps( ;) that is somewhat intricates]: E_talzu_jard d(i)sgretization. The initial velocity of the Lorentz boosted
ink is v=0.6.

of light (i.e., withv=1 in our dimensionless unitgor the
study of kink-antikink scattering. These two methods are
very effective from the computational point of view, in that
they avoid the reflection of practically all the outgoing radia-
tion by the boundaries without the need of using huge lat-
tices.

By using as a guideline the very precise work of Camp-
Bell et al. [9], we have investigated the behavior of kink-
antikink scattering above the critical velocityv.
=0.2538. .., where there are no resulting bound states. In
Fig. 2 we show a particular sample of our simulations, for
the case of an initial kink velocity = 0.4 (similar results are
obtained for differen). The final kink velocity as calcu-
Nated in the above-mentioned work for this same initial ve-

locity is vs~0.28, where the authors have adopted a very
fine lattice, nameljyh=0.01. Comparing this result with ours,
we naotice that our simulations are quite accurate everhnfor
=0.1 (see notes in Fig.)2 From this figure we also clearly
see that the TDS lattice is accurate only wien0.1, where

’ 1 1 2 2
VTDs(d’i):—g (2¢i+ di—1) 1_§(¢i +didi 1+ d_1)

©)

This should be contrasted to the simpler expression from
standard discretization

+(2¢i+ bis1)

1S (82 it 60
3 i i#i+1 i+1

V' (i) =dP— . (6)

However, the main feature of the TDS potential is that it
makes it possible to construct directly from the lattice theor
the Bogomol'nyi lower bound on the kink energy

242

3

h 1
0<Eet 5 2 A(§¢?—¢i =Ep (7)

with A the forward difference operatakf,=(f;,;—f;)/h

andEp the lattice potential energy given by 1500

Epzhzi (8)

1
E(A¢i)2+VTDS(¢i)}- 1000
The kinks are static solutions of the field equations with
energy equal to the above lower limit, namely2/3.

The first obvious thing to be done is to reproduce the
main numerical results of5] in order to check our TDS
implementation. This is shown in Fig. 1 for the case of a
spatial discretizatioln= 1.2 and initial velocityy =0.6. This
result is remarkable, and it is tempting to use this lattice in
other dynamical kink problems, as suggestef3h
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Since we have restricted our study to kink-antikink prob-
lems (including bound states, such as breathere benefit
from the symmetry of systefmp(x,t) = ¢(—x,t)] so that we
need to integrate only half of the original lattice. We have
adopted the “adiabatic damping method” of Gleiser and
Sornborgel[8] for the study of kink-antikink bound states,

FIG. 2. Kink position after a collision with an antikinkhe
collision occurred approximately dt=23). All the three curves
were obtained from a TDS lattice. The most accurate one is, of
course, forh=0.1, where a standard discretization gives the same
plot. The final kink velocity, as obtained by taking the slope of the
curves fort>100, are 0.2777, 0.3049, and 0.5654 ffier 0.1, 0.4,

and a moving boundary with constant velocity equal to thatand 0.8, respectively.
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a standard discretization also works very wétl is not -3 . - -
shown in this figure since it coincides with the TDS curve
Therefore, even though the TDS lattice has achieved a ven
good constant kink velocity in coarse lattices, it overesti-
mated the final kink velocityluring the kink-antikink inter-
action(notice from Fig. 2 that the kink velocity is practically
constant fot>23). We suspect that this fact is related to the
breaking of the Bogomol’'nyi bound, since, during this inter- = _5 |
action, the field configuration loses its static property that is
required by the Bogomol'nyi argument.

Another application of interest within the context of kink
dyngm@s is the formation of kink-antikink bound states, re- -6 0 500 1000 1500 2000
sulting in the so-called breathers. Perhaps the most popula Time
breather is the one in the sine-Gordon thed?}, being
mainly characterized by an exact periodic oscillation of the FIG. 3. Relative energy error for the adiabatic damping method
field such that the resulting coherent structure is stable, i.e., ff Ref.[8] in comparison to an outgoing boundary for our breather

retains the energy localization even wherw. For the ¢* problem. The data fot=100 is not shown sincAE=0 for this
theory in one spatial dimension, however it.is today knownCase: The parameters, in the notation of the above referenck, are
' ' =0.005, po=150, and. =250, where 2 is the physical size of the

that no such stable structure exi$f]. However, an ex- latfice
tremely long-lived structure very similar to a legitimate '
breather exists, and has been a topic of active research not
only in one[11], but also in two and three spatial dimensions
[8,12). fine lattices, such ds=0.4. For more coarse lattices, such as
Using as a reference the work of Geicke on the logarith-h= 0.8, the results start to differ not only in the magnitude of
mic decay ofgp* breathers with energg=<1 [11], we have the energy, but also in its profile. Of course, for larger still
also numerically investigated the effectiveness of the TDSpatial discretizations the error grows without bounds and
approach and, as already anticipated above, the results aierefore the TDS approach is definitely not suitable for such
disappointing. The breather, as obtained in the above workgroblems. Again, we believe that this error is due to the
arises from a dynamical kink-antikink interaction, with the preaking of the Bogomol'nyi bound since, although the kink
kinks initially at rest and at a mutual distance equal to 1.6and the antikink are static solutions of the field equations

Again, and as a first step, we have checked our numeric&gparately, the same is far from being true for their bound
routines by comparing our results with the ones available ingiate ie. for the breather case.

the reference work. The main observable adopted here is the \ye conclude this report by remarking that for all the

energy within a certain region aroume- 0, i.e., the effective roplems tackled here where the TDS approach is accurate,
breather energy. By observing the same region as Geickge  whereh~0.1, a standard discretization is not only sim-
namely —b<x<b with b=100, and integrating up t  per, but also computationally more efficient since it involves
=2000, the resultmg energy wds=0.9732, whereas Gei- fewer operationgcompare Egs(5) and (6), for examplé.
cke's wasE=0.9812. We suspect that this difference is re- we cannot disagree with the fact that such topological lat-
lated to the presence of some dim radiation reflected by thgces are indeed a remarkable discretization for the study of

boundaries of Geicke’s lattidevhich, although alleviated by  free kinks on a lattice. However, in the face of the numerical
his boundary conditions, is still evident from Table | in his

work, for which a greater value of the lattice siaevould

log,|AE/E|

probably follow the observed tendency to decre&dg 13 ' ' '
=2000) for fixedb=100]. As already stated previously, we —— h=0.1
have adopted a very efficient damping method to avoid this 1ol — Efg'g ]

sort of radiation, and have found a set of parameters for
which the method gives a very accurate reghktter than
one part in 10, see Fig. 3 in comparison to an outgoing
boundary(which never reflects the radiation, ).

In Fig. 4 we present another sample of our simulations
now, for the breather energy in a TDS lattice for three values
of h. We feel that this plot is sufficient to show that a topo-
logical lattice gives very different results even for relatively

aqy
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!Geicke reported two values of the energy: one corresponding to
the configuration whergp(0,t) assumed a maximum and the other  FIG. 4. Breather energy for three different lattice spadirig a
when¢(0t) assumed a minimum. The difference, however, is quiteTDS system. Again, thb=0.1 case coincides with the result of a
small (~0.004), so here we quote only the smaller one. standard discretization.
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