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Kink dynamics in a topological f4 lattice
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Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting
lattice preserves the topological~Bogomol’nyi! lower bound on the kink energy and, as a consequence, has no
Peierls-Nabarro barrier even for large spatial discretizations (h'1.0). It was then suggested that these ‘‘topo-
logical discrete systems’’ are a natural choice for the numerical study of continuum kink dynamics. Giving
particular emphasis to thef4 theory, we numerically investigate kink-antikink scattering and breather forma-
tion in these topological lattices. Our results indicate that, even though these systems are quite accurate for
studyingfree kinks in coarse lattices, for legitimatedynamicalkink problems the accuracy is rather restricted
to fine lattices (h'0.1). We suggest that this fact is related to the breaking of the Bogomol’nyi bound during
the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol’nyi
argument. We conclude, therefore, that these lattices arenot suitable for the study of more general kink
dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

DOI: 10.1103/PhysRevE.64.037701 PACS number~s!: 02.60.2x, 05.45.Yv, 47.11.1j, 05.10.2a
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Coherent structures in nonlinear Klein-Gordon field the
ries are an active topic of research in many branches of p
ics, arising either as a fundamental excitation in parti
physics or as a collective excitation in effective field the
ries. Of particular interest are the so-called topological so
tions, where the ‘‘kinks’’ are probably among the most stu
ied ones~see, e.g.@1# and @2#!.

Focusing on the numerical study of kink dynamic
Speight and Ward@3# suggested a new discrete sine-Gord
system that preserves the so-called ‘‘Bogomol’nyi bound’’
the kink energy@4#, being also applied in af4 system@5#,
and recently generalized to nonlinear Klein-Gordon eq
tions in one spatial dimension@6#. These systems were the
called ‘‘topological discrete systems’’~TDS! by the authors
~since the Bogomol’nyi bound depends on the topologi
charge, i.e., on the boundary conditions at infinity!, and they
showed that such lattices do not present the so-called Pe
Nabarro barrier, which, for continuum field theories, is
rather artificial and undesirable effect induced by stand
discretizations.

By means of numerical experiments with the velocity o
single kink, these authors also showed that the numer
drift in a TDS is significantly reduced even for large spat
discretizationsh'1.0, and concluded that this constructio
provides an efficient and natural choice for numerica
simulating kink dynamics in nonlinear Klein-Gordon mo
els. If the latter statement were indeed true, it is clear that
would benefit a lot in both computational time and memo
usage by using coarse lattices withh'1.0 when studying
complex kink behavior in these field theories, such
breather formation and multiple kink~antikink! scattering.

However, and for our disappointment, we found tha
TDS choice for such dynamical problems is good only
fine spatial discretizationsh'0.1, where a simpler standar
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discretization is also accurate. Our proposal in this repor
to show how we have investigated these facts.

The equation of motion for our problem is the we
known Klein-Gordon equation:

] ttf5]xxf2V8~f!, ~1!

with subscripts denoting partial derivatives and primes
noting derivatives with respect tof. The potential we have
adopted is the~double well! f4 one:

V~f!5
1

4
~12f2!2. ~2!

Notice that it differs from that of Speight@5# by a mere factor
of 2. We have, of course, corrected the TDS equations
order to account for this fact, and a test of validity of th
rather, simple correction will be given below for the case
a free kink~All physical quantities in this work will be given
in dimensionless units. For specific applications, a sim
rescaling of the variables in the above equations can in
duce the desired units!.

In order to integrate Eq.~1! we use the standard stagger
leapfrog scheme, which ensures second-order accurac
time ~see, e.g.,@7#!

ḟ i
n11/25ḟ i

n21/21Dt@]xxf i
n2V8~f i

n!#,

f i
n115f i

n1Dtḟ i
n11/2, ~3!

where superscripts~subscripts! denote temporal~spatial! in-
dices, overdots represent partial time derivatives, and pri
are derivatives with respect tof. The spatial derivative is
evaluated with a standard second-order centered differe
@]xxf i'h22(f i 1122f i1f i 21)# that coincides with the re-
sulting discretization required by our particular TDS choi
@5#. Being a symplectic algorithm, the leapfrog scheme
suitable to Hamiltonian systems~see, e.g.,@8#! and therefore
©2001 The American Physical Society01-1
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we expect good energy conservation throughout our sim
tions. Indeed, in a typical simulation withh50.1, the energy
is conserved to better than one part in 103.

The ‘‘standard’’ discretization of the potential~2! is
straightforward, and involves simply the replacement of
continuum argumentsx and t by their discrete counterparts
e.g., i and n. Putting briefly, the TDS approach adopts
rather different lattice potential, which for thef4 case was
suggested to have the form@5#

VTDS~f i !5
1

4 F12
1

3
~f i 11

2 1f i 11f i1f i
2!G2

, ~4!

with the temporal indices equal ton. Of course, in the limit
h→0 both lattice potentials are equivalent to the continu
one~2!. Notice that the resulting equation of motion involv
a field derivative ofVTDS(f i) that is somewhat intricate@5#:

VTDS8 ~f i !52
1

6 H ~2f i1f i 21!F12
1

3
~f i

21f if i 211f i 21
2 !G

1~2f i1f i 11!F12
1

3
~f i

21f if i 111f i 11
2 !G J .

~5!

This should be contrasted to the simpler expression fro
standard discretization

V8~f i !5f i
32f i . ~6!

However, the main feature of the TDS potential is tha
makes it possible to construct directly from the lattice the
the Bogomol’nyi lower bound on the kink energy

0<EP1
h

A2
(

i
DS 1

3
f i

32f i D5EP2
2A2

3
, ~7!

with D the forward difference operatorD f i5( f i 112 f i)/h
andEP the lattice potential energy given by

EP5h(
i

F1

2
~Df i !

21VTDS~f i !G . ~8!

The kinks are static solutions of the field equations w
energy equal to the above lower limit, namely 2A2/3.

The first obvious thing to be done is to reproduce
main numerical results of@5# in order to check our TDS
implementation. This is shown in Fig. 1 for the case o
spatial discretizationh51.2 and initial velocityv50.6. This
result is remarkable, and it is tempting to use this lattice
other dynamical kink problems, as suggested in@3#.

Since we have restricted our study to kink-antikink pro
lems ~including bound states, such as breathers!, we benefit
from the symmetry of system@f(x,t)5f(2x,t)# so that we
need to integrate only half of the original lattice. We ha
adopted the ‘‘adiabatic damping method’’ of Gleiser a
Sornborger@8# for the study of kink-antikink bound states
and a moving boundary with constant velocity equal to t
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of light ~i.e., with v51 in our dimensionless units! for the
study of kink-antikink scattering. These two methods a
very effective from the computational point of view, in th
they avoid the reflection of practically all the outgoing rad
tion by the boundaries without the need of using huge
tices.

By using as a guideline the very precise work of Cam
bell et al. @9#, we have investigated the behavior of kin
antikink scattering above the critical velocityvc
50.2598 . . . , where there are no resulting bound states.
Fig. 2 we show a particular sample of our simulations,
the case of an initial kink velocityv50.4 ~similar results are
obtained for differentv). The final kink velocity as calcu-
lated in the above-mentioned work for this same initial v
locity is v f'0.28, where the authors have adopted a v
fine lattice, namelyh50.01. Comparing this result with ours
we notice that our simulations are quite accurate even foh
50.1 ~see notes in Fig. 2!. From this figure we also clearly
see that the TDS lattice is accurate only whenh'0.1, where

FIG. 1. Time evolution of the free kink velocity forh51.2. The
upper curve is for the TDS lattice whereas the lower one is fo
standard discretization. The initial velocity of the Lorentz boos
kink is v50.6.

FIG. 2. Kink position after a collision with an antikink~the
collision occurred approximately att'23). All the three curves
were obtained from a TDS lattice. The most accurate one is
course, forh50.1, where a standard discretization gives the sa
plot. The final kink velocity, as obtained by taking the slope of t
curves fort.100, are 0.2777, 0.3049, and 0.5654 forh50.1, 0.4,
and 0.8, respectively.
1-2
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a standard discretization also works very well~it is not
shown in this figure since it coincides with the TDS curv!.
Therefore, even though the TDS lattice has achieved a v
good constant kink velocity in coarse lattices, it overes
mated the final kink velocityduring the kink-antikink inter-
action~notice from Fig. 2 that the kink velocity is practicall
constant fort.23). We suspect that this fact is related to t
breaking of the Bogomol’nyi bound, since, during this inte
action, the field configuration loses its static property tha
required by the Bogomol’nyi argument.

Another application of interest within the context of kin
dynamics is the formation of kink-antikink bound states,
sulting in the so-called breathers. Perhaps the most pop
breather is the one in the sine-Gordon theory@2#, being
mainly characterized by an exact periodic oscillation of
field such that the resulting coherent structure is stable, i.e
retains the energy localization even whent→`. For thef4

theory in one spatial dimension, however, it is today kno
that no such stable structure exists@10#. However, an ex-
tremely long-lived structure very similar to a legitima
breather exists, and has been a topic of active research
only in one@11#, but also in two and three spatial dimensio
@8,12#.

Using as a reference the work of Geicke on the logar
mic decay off4 breathers with energyE&1 @11#, we have
also numerically investigated the effectiveness of the T
approach and, as already anticipated above, the results
disappointing. The breather, as obtained in the above w
arises from a dynamical kink-antikink interaction, with th
kinks initially at rest and at a mutual distance equal to 1
Again, and as a first step, we have checked our nume
routines by comparing our results with the ones available
the reference work. The main observable adopted here is
energy within a certain region aroundx50, i.e., the effective
breather energy. By observing the same region as Gei
namely 2b<x<b with b5100, and integrating up tot
52000, the resulting energy wasE50.9732, whereas Gei
cke’s wasE50.9812.1 We suspect that this difference is r
lated to the presence of some dim radiation reflected by
boundaries of Geicke’s lattice@which, although alleviated by
his boundary conditions, is still evident from Table I in h
work, for which a greater value of the lattice sizea would
probably follow the observed tendency to decreaseE(t
52000) for fixedb5100#. As already stated previously, w
have adopted a very efficient damping method to avoid
sort of radiation, and have found a set of parameters
which the method gives a very accurate result~better than
one part in 104, see Fig. 3! in comparison to an outgoing
boundary~which never reflects the radiation, see@8#!.

In Fig. 4 we present another sample of our simulatio
now, for the breather energy in a TDS lattice for three valu
of h. We feel that this plot is sufficient to show that a top
logical lattice gives very different results even for relative

1Geicke reported two values of the energy: one correspondin
the configuration wheref(0,t) assumed a maximum and the oth
whenf(0,t) assumed a minimum. The difference, however, is qu
small (;0.004), so here we quote only the smaller one.
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fine lattices, such ash50.4. For more coarse lattices, such
h50.8, the results start to differ not only in the magnitude
the energy, but also in its profile. Of course, for larger s
spatial discretizations the error grows without bounds a
therefore the TDS approach is definitely not suitable for su
problems. Again, we believe that this error is due to t
breaking of the Bogomol’nyi bound since, although the ki
and the antikink are static solutions of the field equatio
separately, the same is far from being true for their bou
state, i.e., for the breather case.

We conclude this report by remarking that for all th
problems tackled here where the TDS approach is accu
i.e., whereh'0.1, a standard discretization is not only sim
pler, but also computationally more efficient since it involv
fewer operations@compare Eqs.~5! and ~6!, for example#.
We cannot disagree with the fact that such topological
tices are indeed a remarkable discretization for the stud
freekinks on a lattice. However, in the face of the numeric

to

e

FIG. 3. Relative energy error for the adiabatic damping meth
of Ref. @8# in comparison to an outgoing boundary for our breath
problem. The data fort&100 is not shown sinceDE50 for this
case. The parameters, in the notation of the above reference,k
50.005,r05150, andL5250, where 2L is the physical size of the
lattice.

FIG. 4. Breather energy for three different lattice spacingh in a
TDS system. Again, theh50.1 case coincides with the result of
standard discretization.
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experiments presented here, wecannotagree that this con
struction is an efficient and natural choice for numerica
simulating kink dynamics in nonlinear continuum Klein-
Gordon models@5,6#.
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